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STABILITY OF STATIONARY SPATIALLY PERIODIC CONVECTIVE 

MOTIONS IN A PLANE VERTICAL LAYER 

L. P~ Vozovoi and A. A. Nepomnyashchii UDC 532.516:536.25 

A wide range of studies has been dedicated to the stability of plane-parallel convective 
motions in viscous liquid layers (see [i, 2]). It is known that in those cases where instab- 
ility is of a monotonic character, it leads to development of stationary spatially periodic 
motions. Clever et al. [3, 4] studied stability of finite amplitude secondary motions. In 
[5-8] the stability of convective swell was considered, while [9] treated hexagonal cells 
which develop in horizontal layers due to an equilibrium crisis. In these studies stability 
was determined by solution of the spectral problem obtained by applying the Halerkin method 
to the linearized problem for perturbations. The present study will examine the stability 
of stationary spatially periodic motions in a planar vertical layer in the presence of lateral 
heating. The increments of the least stable perturbation will be determined from the time 
asymptote of the solution of the linearized perturbation problem, which will be constructed 
by the grid method [i0, ii]. Calculations are performed for Prandtl number by the grid method 
[I0, Ii]. Calculations are performed for Prandtl number Pr = 1 over the Grashof number range 
500 < Gr < 2000. The dependence of the increment on quasiwave number is obtained, the bounda- 
ries of the stability region are defined for spatially periodic secondary motions, and the 
main types of perturbations producing instability are determined. 

I. We will consider an infinite vertical layer filled by a viscous incompressible 
fluid. On the solid boundaries of the layer (y = • constant but different temperatures T = 
• maintained (the x axis is directed vertically upward, and the y axis is horizontal). 
In dimensionless form we write the system of equations for two-dimensional convection: 

0~/8t = A~ + OrST/Oy + D(@, ~)/D(x, y); (1 .1 )  

AW :~ --~; (1.2) 

8T/St = (I/Pr)AT + D(T, ~)/D(x, V), (1 .3 )  

where D( f ,  g ) / D ( x ,  y)  = ( a f / a x ) a g / a y  - ( a f / a y ) a g / a x ;  , ,  f low f u n c t i o n ;  q, v o r t i c i t y .  The 
similarity parameters are the Grashof number Gr and Prandtl number Pr. Assuming the flow to 
be closed (no pumping of liquid along the layer) the boundary conditions have the form 

== a~/Sy = 0, T =_+_1 a~ y = +1 .  (1 .4 )  

We also require that all functions remain finite at infinity 

Iml, I~1, ITt < oo as x - +  ++_ o o .  1 . 5 )  

Boundary p rob lem ( 1 . 1 ) - ( 1 . 5 )  a lways has a s o l u t i o n  
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gr o .... (Or/24)(i  - -  y~)'-', T. = y, cD o = (Gr/6)g(i  - -  g,a), ( 1 . 6 )  

describing plane-parallel flow. If the Prandtl number Pr < 12, this flow loses stability 
with respect to monotonically increasing perturbations at Gr > Gr c ~500 [I]. The nonlinear 
development of perturbations in the supercritical region leads to establishment of stationary 
spatially periodic motions [12, 13]. In []4] the stability of secondary flows was studied in 
the threshold region Gr ~ Grc; it was established that the least stable are those perturba- 
tions containing Fourier components with wave numbers close to the wave number of the main 
flow (Eckhaus instability). In [15, 16] the stability of secondary flows was studied for 
finite supercriticality Gr- Grc, but onlywithrespect to perturbations with integral wave 
numbers. It was shown that with increase in period nonstationary motions of the standing- 
wave type develop. 

The present study will examine stability of spatially periodic stationary motions at a 
finite excess above the threshold Grashof number with respect to planar perturbations of 
general form, not necessarily periodic. 

2~ Let F] = (~i, ~i, T~) be the stationary solution of Eqs. (1.1)-(Io5) with period 27/ 
k. For a small normal perturbation Fe It = (p, ~, T)e It, imposed on this solution, we obtain 
the linear boundary problem 

~/' D ((]), IF1) D ((Pl' ~g) 
~<|~ Ac~q-Gr57/~ t  { D(z,y) ~- -D~,Tjy' ( 2 . 1 )  

D (r, G) D (r~, v). 
Aq" -~ - -q ' ,  ~ T : : : P r - I A T ~ -  D(z,.q) -i D(x,~)  ' 

g -= i)u//O,/ :: T : -  0 at y = ~ t ,  [(D[, jq!l, !T] < c o  ( 2 . 2 )  

at z := q - o c .  

I n  t h e  c a s e  o f  a p l a n e - p a r a l l e l  m a i n  m o t i o n  F o ( y ) ,  i n d e p e n d e n t  o f  t h e  v a l u e  o f  t h e  l o n g i t u -  
d i n a l  c o o r d i n a t e  x ,  s m a l l  p e r t u r b a t i o n s  can  be  r e p r e s e n t e d  • t h e  fo rm F ( x ,  y )  = f ( y ) e i k x  and  
c a n  be  d e s c r i b e d  by  O r r - - S o m m e r f e l d - t y p e  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s .  F o r  s p a t i a l l y  
p e r •  m o t i o n  p e r t u r b a t i o n s  s u c h  a s  a s e p a r a t i o n  o f  v a r i a b l e s  d o e s  n o t  o c c u r ,  s i n c e  i n  Eq. 
( 2 . 1 )  f u n c t i o n s  p e r i o d i c  i n  x w i t h  p e r i o d  2 ~ / k  a p p e a r  a s  c o e f f i c i e n t s .  N e v e r t h e l e s s ,  t h e  
fo rm o f  t h e  s o l u t i o n  r e m a i n s  q u i t e  s p e c i f i c  and  f o l l o w s  f r o m  t h e  g r o u p  p r o p e r t i e s  o f  t h e  
b o u n d a r y  p r o b l e m  ( 2 . 1 ) ,  (2.2)  [ t 7 ] :  

F(x, y) = /(x, y)e iqx, /= (% % 0), f ( z -~  2rffk, y) -= f(z~ y) ( 2 . 3 )  

(Flocke--Bloch function). The real parameter q (which we will term the quasiwave number of 
the perturbation) is defined to the accuracy of an integer k, and can be chosen within the 
range l ql <k/2" 

Substituting Eq. (2.3) in Eqs. (2.1), (2.2) we obtain a boundary problem for the eigen- 
functions, containing q as an independent parameter: 

D(01, ~) q_ 0grl~ ~(~yl~, ( 2 . 4 )  o- aq~ o0 D (% ~ )  _t 
> ~ q ' = A q ' [ - I ' " z q D T - - q ~ g ' - ~ ' G r 7 7  " D(x ,y )  ' b ( z , y )  iqa-f~jP--~q 

9i O~p A~ @ ~ q0-7 - -  qe~ @ (p = 0; ( 2 . 5 )  

)~0 = Pr -~  ~ , A 0 9 2 i q 7 7  -q~O; + D(z,y) q--~-(-;/y) q-iq'-aT/u O--~q-@y ( 2 . 6 )  

~l? := O~,/@ = 0 = 0, ( 2 . 7 )  
~,(z -k 2=/k, y) =: g,(x, y), q)(x 4- 2z~/k, y) 

:= q0(x, F), 0 ( x @  2a/k, y) = O(x, y) at y = __t.  

L e t  f n ( x ,  y ) ,  n = 1, 2 ,  . . .  be  e i g e n f u n c t i o n s  o f  t h i s  p r o b l e m ,  r e n o r m a l i z e d  s u c h  t h a t  f o r  
a l l  c o r r e s p o n d i n g  i n c r e m e n t s  Re i n ~-~Re i n + , .  The m a i n  m o t i o n  w i t h  p e r i o d  2 v / k  i s  u n s t a b l e  
i f  f o r  any  q Re 5, z > 0 . *  

We w i l l  now c o n s i d e r  c e r t a i n  s y m m e t r y  p r o p e r t i e s  o f  t h e  f u n c t i o n s  F ~ ( x ,  y )  and  f ( x ,  y ) .  

* I n  c o n t r a s t  t o  t h e  O r r - - S o m m e r f e l d  p r o b l e m ,  t h e  c o m p l e t e n e s s  o f  t h e  e i g e n f u n e t i o n  s y s t e m  h a s  
n o t  b e e n  p r o v e n  f o r  t h e  t w o - d i m e n s i o n a l  p r o b l e m  E q s .  ( 2 . 4 ) - ( 2 . 7 ) .  T h e r e f o r e ,  s t r i c t l y  s p e a k -  
i n g ,  t h e  i n s t a b i l i t y  c o n d i t i o n  f o r m u l a t e d  i s  o n l y  s u f f i c i e n t .  F o r  t h e  f u t u r e ,  h o w e v e r ,  we 
w i l l  a s sume  ( a s  i s  u s u a l l y  d o n e )  t h a t  t h e  s e t  o f  f u n c t i o n s  fn  i s  c o m p l e t e .  
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We introduce the transform 

n(~(x, y), ~(x, y), 0(x, y)) -= (~ ( -~ ,  - y ) ,  ~-(-~-, - y ) , - b - ( - x ,  - y ) ) .  

From Eqs. (I .I)-(1.4) it is evident that the functions ~i and ~i can be chosen symmetric, 
and TI can be chosen antisymmetric with respect to inversion, i.e., 

II(FI) -- f 1. (2.8) 

Further, it follows from Eqs. (2.4)-(2.7) that if f~ is the eigenfunction corresponding to 
the increment ~i, then the function ~(fl) is an eigenfunction and corresponds to the incre- 
ment k~. In the case of a real nondegenerate value of X~ we may take f~ = ~(f~), i.e., 

~ ( x ,  y) = ~](--~, --y), ~ (x ,  Y) = ~ ( - - x ,  --Yh 

Odx, v ) = - ~ ( - x ,  -y). 
3. Calculation of stationary secondary motions can be performed numerically using the 

grid method with Eqs. (].l)-(l.5). This same method can be used to construct small pertur- 
bations. 

We will consider the nonstationary problem obtained by replacing X by the operator 3/3t 
in Eqs. (2.4)-(2.7), supplemented by a special initial condition. If 

co 

] (x, y, O)-= ~ anfa (x, y), 

where a n are constant coefficients, then the solution of the Cauchy problem has the form 

! (x, y, t)= ~ a~/~ (z, y) e~n t" 

We note that if the function f(x, y, 0) has the property that 

H(/(x, Y, 0 ) ) =  ](x, Y, 0), 

then this syrmnetry property is maintained at following moments in time 

II(i(x, Y, t ) ) =  l(xl Y, t). ( 3 . 1 )  

The increment of the least stable mode is determined by examining the time asymptote of 
the given solution. If the value of XI is real, then in the absence of random degeneration 
(XI = %a) as t § 

~. ~1 t 
](x,  y, t),-~ axll(x, y)e . 

Then the value of X~(q) can be calculated, for example, as 

�9 0 

~ (q) ---- hm - -  In I ~r (xo, Yo, t) I, (3 2) 
t-~=o Ot 

where ~r  ~ Re r  t he  c h o i c e  o f  p o i n t s  Xo, yo i s  a r b i t r a r y .  In  the  ca se  of  a complex i n c r e -  
meat ~ as t § o~ 

, ~1 t f (x ,  y, t) .-~ a~/le ~at + azl~e , (3 .3 )  

where f2 = H(fx). It can be seen that at a2 = a~ the function f(x, y, t) has the property of 
Eq. (3.1). Introducing the notation f+ = fz + f2, f- = f~ -- f2 and setting az = a exp (i~), 
we write the solution (3.3) in the form 

l (X, y, t)~-" ae l~exl't [l+ cos (Ira ~1" t + a) + i]_ sin (Ira X l" t "6 a)]. 

To calculate the increment in this case we may use the expressions: 

�9 t ~  ~ r  Y=Yo 

( t h e  do t  d e n o t e s  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  to  t ) .  We s t r e s s  t h a t  t h e  i n c r e m e n t  can be 
determined from the asymptote of the solutions satisfying the additional symmetry property, 
Eq. ( 3 . 1 ) .  
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Fig. I. Fig. 2. 

'The equations describing the evolution of vorticity and temperature for the main flow 
and for perturbations having identical structure are: 

~u/~t = a(a2U/~x 2 + ~2u./ay~) + b~Ou/Sx + b~Ou/Oy + cu § d 

and can be solved by the partial step method with longitudinal--transverse drive [18]. The 
Poisson equation is selved by the Liebman iteration method with successive upper relaxation. 
In view of their identical periodicity the functions FI and f are constructed on one grid 
pattern. Solutions are sought which satisfy conditions (2.8), (3.1); the problem is solved 
in half of the layer --I ~-~y~ O; at y = 0 we impose the inverse symmetry (or antisymmetry) 
condition for the corresponding functions, 

Due to the exponential growth of perturbations, the values of the functions fn and fn+1, 
taken at one ~nd the same points in neighboring time layers will differ even in the steady- 
state regime. In connection with this, special measures were taken to eliminate factors dis- 
rupting the implicitness of the method and degrading the approximation. 

In particular, to perform the vertical drive cyclical boundary conditions [19] were em- 
ployed. In approximating th~ vorticity in the case of real % the following procedure was 
used: 

T ~+~ [y=-I  = - - (2 /h2)~  n l y = - l + h  exx, ( 3 . 4 )  

where n is the number of the time layer; h is the spatial grid step along the y axis, and 
is the time step. Equation (3.4) is in fact Tom's formula, modified by consideration of the 
asymptote of the solution at large times. The value of % is determined from Eq. (3.2). In 
the case of complex % another procedure is used: 

l Y = - - I  - - -  ] Y ~ - - l + h "  

A more detailed description Of this calculation method is given in [ll]. 

4. We will turn to an evaluation of the results of calculations performed at fixed 
Prandtl number (Pr = I). Figures I-3 show characteristic dependences of the increment of the 
least stable mode on quasiwave number ]qi < k/2. Because of the even nature of the increments 
%(q) = %(--q) the graphs show only the half of the region with q > 0 (this property can be 
shown most easily by using the notation f = Re f + i Im f in Eqs. (2.4)-(2.6) and writing 
separate equations for real and imaginary components). Figure 4 shows a composite graph of 
stability of spatially periodic motions in the plane of the parameters Gr, k. 

The %(q) curves of Fig. I were constructed for Gr = 550. Curve 1 corresponds to stable 

D. 8 

/ 
! 
! 

. . . .  7 t - ' 
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Fig. 3. 
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motion (k = 1.4), while curve 2 is unstable (k = 1.57); in Fig. 4 these motions are shown by 
points I and 2, respectively. As is evident from the upper graph, the least stable perturba- 
tions are those with small q (in other words, with wave numbers close to the wave number of 
the main flow), Eckhaus type perturbations. In Fig. 4 the boundary dividing the regions of 
stability and instability with respect to perturbations of this type is denoted by the symbol 
I; it is defined by the condition ~2~/~q2 = 0. The dashed line shows the same curve, as ob- 
tained analytically in [14]. It is obvious that the region of applicability of analytical 
methods in the given problem is quite limited -- even at slight supercriticality both branches 
of the curve I deviate markedly to the left of the dashed line. 

With growth in Grashof number the right-hand (short wave) boundary of the stability re- 
gion proves always to be related to Eckhaus type perturbations. As for the left-hand boundary 
(long-wave region), there is greater variation in the type of instability. Figure 2 shows 
spectra of motions with wave numbers k = 1.03 (curve 3) and k = I (curve 4) for Gr = 700. In 
both cases the least stable perturbations are those with finite q. The stability boundary 
with respect to perturbations of that type is shown by line II in Fig. 4. 

With increase in Grashof number the value of q corresponding to maximum % shifts to the 
right until it coincides (at Gr ~800) with the boundary of the zone q = k/2. The stability 
curve for perturbations with q = k/2 is denoted by the symbol III. 

With further increase in Gr the perturbations with q = k/2 remain the least stable, and 
become oscillatory. The stability curve III breaks off at the point where Im %~=0 and con- 
tinues further as line IV (Fig. 4). We note that at finite q < k/2 (less unstable) the com- 
plex branch %(q) can split again into two real curves. 

Further increase in Gr does not lead to qualitatively new types of instability. The 
boundaries I and IV slowly move toward each other, while curve I approaches an almost ver- 
tical asymptote. The region of stable secondary motions gradually narrows, and at Gr ~ 2000 
there is only a very narrow interval of wave numbers in the vicinity of k ~ 1.05, in which 
spatially periodic motions still remain stable. We stress that the stability region still 
does exist at high supercriticality in the form of a very narrow band. In practice, a motion 
with a fully defined wave number remains. 

In conclusion, we will touch briefly on yet another type of perturbation observed in the 
problem under consideration, which, however, does not prove to be the least stable in any 
parameter range. The stability boundary with respect to perturbations of this type is given 
in Fig. 4 by curve V. Upon passage through this curve perturbations with q = 0 begin to in- 
crease monotonically, i.e., those perturbations with the same period as the main flow. The 
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function %(q) for motion from this region is shown in Fig. 3 (curve 6, Gr = 800, k = 0.98). 
We note that direct numerical solution of system (1.1)-(1.4) with periodic boundary condi- 
tions in x for parameter values taken from the region of the lefthand boundary V show insta- 
bility of inverse symmetric stationary main motion, leading to development of flows in the 
form of periodic vortex systems moving upward or downward in the layer, and not having in- 
verse symmetry. > 

The authors are indebted to G. Z. Gershuni, E. M. Zhukhovitskii, EZ �9 L. Tarunin, and D. 
Vo Lyubimov for their valuable advice. 
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